Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract.
نویسندگان
چکیده
The suprachiasmatic nuclei (SCN) contain the major pacemaker for mammalian circadian rhythms. The SCN receive photic input both directly, via the retinohypothalamic tract (RHT), and indirectly, via the geniculohypothalamic tract (GHT), which originates in cells in the intergeniculate leaflet (IGL) and anterior portions of the ventral lateral geniculate nucleus (vLGN). We tested whether electrical stimulation of the GHT would induce phase shifts in wheel-running activity rhythms of Syrian hamsters housed in continuous darkness or continuous illumination. In both lighting conditions, electrical stimulation of the GHT induced mainly phase advances when given during the late subjective day and small phase delays when given during the late subjective night and early subjective day. Stimulation in the thalamus outside the GHT failed to produce similar phase shifts. Repeated daily stimulation had only a weak entraining effect on the activity rhythm. Activation of GHT neurons appears to influence the pacemaker for activity rhythms in a phase-dependent manner.
منابع مشابه
Geniculo-hypothalamic tract lesions block chlordiazepoxide-induced phase advances in Syrian hamsters.
Administration of the benzodiazepine triazolam at the appropriate time in the circadian cycle has been shown to induce phase shifts in hamster circadian rhythms. These phase shifts can be blocked by geniculo-hypothalamic tract (GHT) ablation or by restraint of activity. The present study examined the effects of the benzodiazepine chlordiazepoxide on running-wheel activity rhythms of hamsters. T...
متن کاملNeuronal input pathways to the brain's biological clock and their functional significance.
Circadian rhythms are entrained daily by environmental photic and non-photic cues. The present review describes the anatomy and functional characteristics of the three major input pathways to the circadian clock mediating entrainment: the retino-hypothalamic tract, the geniculo-hypothalamic tract and the midbrain raphe projection.
متن کاملGastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro.
The main mammalian circadian pacemaker is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Gastrin-releasing peptide (GRP) and its receptor (BB(2)) are synthesized by rodent SCN neurons, but the role of GRP in circadian rhythm processes is unknown. In this study, we examined the phase-resetting actions of GRP on the electrical activity rhythms of hamster and rat SCN neurons in v...
متن کاملGlutamate phase shifts circadian activity rhythms in hamsters.
The suprachiasmatic nuclei (SCN) have been identified as a pacemaker for many circadian rhythms in mammals. Photic entrainment of this pacemaker can be accomplished via the direct retino-hypothalamic tract (RHT). Glutamate is a putative transmitter of the RHT. In the present study it is demonstrated that glutamate injections in the SCN cause phase shifts of the circadian activity rhythm of the ...
متن کاملThe effects of electrical stimulation of the optic nerves and anterior optic chiasm on the circadian activity rhythm of the Syrian hamster: involvement of excitatory amino acids.
The circadian pacemaker of the suprachiasmatic nuclei (SCN) is entrained to the environmental light-dark cycle via the retinohypothalamic tract (RHT). It is unknown whether light activates or suppresses firing of the retinal ganglion cells which mediate photic entrainment. We therefore electrically stimulated the optic nerves and the anterior optic chiasm of hamsters with free-running activity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 493 2 شماره
صفحات -
تاریخ انتشار 1989